Activation of epithelial Na channels by hormonal and autoregulatory mechanisms of action
نویسندگان
چکیده
Methods of blocker-induced noise analysis were used to investigate the way in which forskolin and vasopressin stimulate Na transport at apical membranes of short-circuited frog skin transporting Na at spontaneous rates of transport. Experiments were done under conditions where the apical Ringer solution contained either 100 mM Na or a reduced Na concentration of 5 or 10 mM Na and buffered with either HCO3 or HEPES. Reduction of apical solution Na concentration caused a large autoregulatory increase of Na channel density (NT) similar in magnitude to that observed previously in response to blocker (amiloride) inhibition of apical membrane Na entry. Forskolin at 2.5 microM caused maximal and reversible large increases of NT, which were larger than could be elicited by 30 mU/ml vasopressin. In both the absence and presence of the autoregulatory increase of NT (caused by reduction of apical Na concentration), forskolin caused large increases of NT. Although the fractional increases of NT in response to forskolin were roughly similar, the absolute increases of NT were considerably larger in those tissues studied at reduced Na concentration and where baseline values of NT were markedly elevated by reduction of apical Na concentration. Because the effects on NT were additive, it is likely that the cAMP-dependent and autoregulatory mechanism that lead to changes of NT are distinct. We speculate that autoregulation of NT may involve change of the size of a cytosolic pool of Na-containing vesicles that are in dynamic balance with the apical membranes. cAMP-dependent regulation of NT may involve change of the dynamic balance between vesicles and the apical membranes of these epithelial cells. Alternative hypotheses cannot at present be ruled out, but will require incorporation of the idea that regulation of NT can occur both by hormonal and nonhormonal (autoregulatory) mechanisms of action.
منابع مشابه
Optogenetics: Control of Brain Using Light
Neuronal cells communicate with each other by producing electrical signals or action potentials (APs). Different ion channels, including Na+, K+ and Ca2+ channels, are involved in generation of AP. Once an AP is generated in the soma, it travels down entire the axon length toward its terminal in a self-generating fashion that ultimately conveys information between neurons in the neural circuit....
متن کاملContribution of potassium channels, beta2-adrenergic and histamine H1 receptors in the relaxant effect of baicalein on rat tracheal smooth muscle
Objective(s): Baicalein, a compound extracted from a variety of herbs, showed various pharmacological effects. This study evaluated the relaxant effects of baicalein and its underlying molecular mechanisms of action on rat’s isolated tracheal smooth muscle.Materials and Methods: Tracheal smooth muscle were contracted by 10 μM methacholin...
متن کاملMolecular properties of epithelial, amiloride-blockable Na+ channels.
The apical membrane of many tight epithelia contains Na+ channels that are primarily characterized by their high affinity to the diuretic blocker amiloride. These channels mediate the first step of active Na+ reabsorption essential for the maintenance of body salt and water homeostasis. They are regulated by mineralocorticoids, antidiuretic peptides, atrial natriuretic peptides, and other facto...
متن کاملProbiotic Modes of Action and Its Effect on Biochemical Parameters and Growth Performance in Poultry
Provide a healthy diet is one of the major health challenges in the world to maintain health and nutritional status of populations. In this reason, new control strategies such as probiotics have been applied as prophylactic and therapeutic instead of antibiotics. In the same line, probiotics have antagonistic effects to various microorganisms proposed in several mechanisms including improvement...
متن کاملInternational Union of Basic and Clinical Pharmacology. XCI. structure, function, and pharmacology of acid-sensing ion channels and the epithelial Na+ channel.
The epithelial Na(+) channel (ENaC) and the acid-sensing ion channels (ASICs) form subfamilies within the ENaC/degenerin family of Na(+) channels. ENaC mediates transepithelial Na(+) transport, thereby contributing to Na(+) homeostasis and the maintenance of blood pressure and the airway surface liquid level. ASICs are H(+)-activated channels found in central and peripheral neurons, where their...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 98 شماره
صفحات -
تاریخ انتشار 1991